

django-extra-views

Django Extra Views provides a number of additional class-based generic views to
complement those provide by Django itself. These mimic some of the functionality
available through the standard admin interface, including Model, Inline and
Generic Formsets.

Features

	FormSet and ModelFormSet views - The formset equivalents of
FormView and ModelFormView.

	InlineFormSetView - Lets you edit a formset related to a model (using
Django’s inlineformset_factory).

	CreateWithInlinesView and UpdateWithInlinesView - Lets you edit a
model and multiple inline formsets all in one view.

	GenericInlineFormSetView, the equivalent of InlineFormSetView but for
GenericForeignKeys.

	Support for generic inlines in CreateWithInlinesView and
UpdateWithInlinesView.

	Support for naming each inline or formset in the template context with
NamedFormsetsMixin.

	SortableListMixin - Generic mixin for sorting functionality in your views.

	SearchableListMixin - Generic mixin for search functionality in your views.

	SuccessMessageMixin and FormSetSuccessMessageMixin - Generic mixins
to display success messages after form submission.

Table of Contents

	Getting Started
	Installation

	Quick Examples

	Formset Views
	FormSetView

	ModelFormSetView

	InlineFormSetView

	CreateWithInlinesView and UpdateWithInlinesView

	GenericInlineFormSetView

	Formset Customization Examples
	Overriding formset_kwargs and factory_kwargs at run time

	Overriding the the base formset class

	Initial data for ModelFormSet and InlineFormSet

	Passing arguments to the form constructor

	Named formsets

	Success messages

	List Views
	Searchable List Views

	Sortable List View

Reference

	Change History

Getting Started

Installation

Install the stable release from pypi (using pip):

pip install django-extra-views

Or install the current master branch from github:

pip install -e git://github.com/AndrewIngram/django-extra-views.git#egg=django-extra-views

Then add 'extra_views' to your INSTALLED_APPS:

INSTALLED_APPS = [
 ...
 'extra_views',
 ...
]

Quick Examples

FormSetView

Define a FormSetView, a view which creates a single formset from
django.forms.formset_factory and adds it to the context.

from extra_views import FormSetView
from my_forms import AddressForm

class AddressFormSet(FormSetView):
 form_class = AddressForm
 template_name = 'address_formset.html'

Then within address_formset.html, render the formset like this:

<form method="post">
 ...
 {{ formset }}
 ...
 <input type="submit" value="Submit" />
</form>

ModelFormSetView

Define a ModelFormSetView, a view which works as FormSetView
but instead renders a model formset using
django.forms.modelformset_factory.

from extra_views import ModelFormSetView

class ItemFormSetView(ModelFormSetView):
 model = Item
 fields = ['name', 'sku']
 template_name = 'item_formset.html'

CreateWithInlinesView or UpdateWithInlinesView

Define CreateWithInlinesView and UpdateWithInlinesView,
views which render a form to create/update a model instance and its related
inline formsets. Each of the InlineFormSetFactory classes use similar
class definitions as the ModelFormSetView.

from extra_views import CreateWithInlinesView, UpdateWithInlinesView, InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
 model = Item
 fields = ['sku', 'price', 'name']

class ContactInline(InlineFormSetFactory):
 model = Contact
 fields = ['name', 'email']

class CreateOrderView(CreateWithInlinesView):
 model = Order
 inlines = [ItemInline, ContactInline]
 fields = ['customer', 'name']
 template_name = 'order_and_items.html'

class UpdateOrderView(UpdateWithInlinesView):
 model = Order
 inlines = [ItemInline, ContactInline]
 fields = ['customer', 'name']
 template_name = 'order_and_items.html'

Then within order_and_items.html, render the formset like this:

<form method="post">
 ...
 {{ form }}

 {% for formset in inlines %}
 {{ formset }}
 {% endfor %}
 ...
 <input type="submit" value="Submit" />
</form>

Formset Views

For all of these views we’ve tried to mimic the API of Django’s existing class-based
views as closely as possible, so they should feel natural to anyone who’s already
familiar with Django’s views.

FormSetView

This is the formset equivalent of Django’s FormView. Use it when you want to
display a single (non-model) formset on a page.

A simple formset:

from extra_views import FormSetView
from my_app.forms import AddressForm

class AddressFormSetView(FormSetView):
 template_name = 'address_formset.html'
 form_class = AddressForm
 success_url = 'success/'

 def get_initial(self):
 # return whatever you'd normally use as the initial data for your formset.
 return data

 def formset_valid(self, formset):
 # do whatever you'd like to do with the valid formset
 return super(AddressFormSetView, self).formset_valid(formset)

and in address_formset.html:

<form method="post">
 ...
 {{ formset }}
 ...
 <input type="submit" value="Submit" />
</form>

This view will render the template address_formset.html with a context variable
formset representing the AddressFormSet. Once POSTed and successfully
validated, formset_valid will be called (which is where your handling logic
goes), then the view will redirect to success_url.

Formset constructor and factory kwargs

FormSetView exposes all the parameters you’d normally be able to pass to the
django.forms.BaseFormSet constructor and
django.forms.formset_factory(). This can be done by setting the
respective attribute on the class, or formset_kwargs and
factory_kwargs at the class level.

Below is an exhaustive list of all formset-related attributes which can be set
at the class level for FormSetView:

...
from my_app.forms import AddressForm, BaseAddressFormSet

class AddressFormSetView(FormSetView):
 template_name = 'address_formset.html'
 form_class = AddressForm
 formset_class = BaseAddressFormSet
 initial = [{'type': 'home'}, {'type': 'work'}]
 prefix = 'address-form'
 success_url = 'success/'
 factory_kwargs = {'extra': 2, 'max_num': None,
 'can_order': False, 'can_delete': False}
 formset_kwargs = {'auto_id': 'my_id_%s'}

In the above example, BaseAddressFormSet would be a subclass of
django.forms.BaseFormSet.

ModelFormSetView

ModelFormSetView makes use of django.forms.modelformset_factory(), using the
declarative syntax used in FormSetView as well as Django’s own class-based
views. So as you’d expect, the simplest usage is as follows:

from extra_views import ModelFormSetView
from my_app.models import Item

class ItemFormSetView(ModelFormSetView):
 model = Item
 fields = ['name', 'sku', 'price']
 template_name = 'item_formset.html'

Rather than setting fields, exclude can be defined
at the class level as a list of fields to be excluded.

It is not necessary to define fields or exclude if a
form_class is defined at the class level:

...
from django.forms import ModelForm

class ItemForm(ModelForm):
 # Custom form definition goes here
 fields = ['name', 'sku', 'price']

class ItemFormSetView(ModelFormSetView):
 model = Item
 form_class = ItemForm
 template_name = 'item_formset.html'

Like FormSetView, the formset variable is made available in the template
context. By default this will populate the formset with all the instances of
Item in the database. You can control this by overriding get_queryset on
the class, which could filter on a URL kwarg (self.kwargs), for example:

class ItemFormSetView(ModelFormSetView):
 model = Item
 template_name = 'item_formset.html'

 def get_queryset(self):
 sku = self.kwargs['sku']
 return super(ItemFormSetView, self).get_queryset().filter(sku=sku)

InlineFormSetView

When you want to edit instances of a particular model related to a parent model
(using a ForeignKey), you’ll want to use InlineFormSetView. An example use case
would be editing addresses associated with a particular contact.

from extra_views import InlineFormSetView

class EditContactAddresses(InlineFormSetView):
 model = Contact
 inline_model = Address

 ...

Aside from the use of model and inline_model,
InlineFormSetView works more-or-less in the same way as
ModelFormSetView, instead calling django.forms.inlineformset_factory().

CreateWithInlinesView and UpdateWithInlinesView

These are the most powerful views in the library, they are effectively
replacements for Django’s own CreateView and UpdateView. The key
difference is that they let you include any number of inline formsets (as well
as the parent model’s form). This provides functionality much like the Django
Admin change forms. The API should be fairly familiar as well. The list of the
inlines will be passed to the template as context variable inlines.

Here is a simple example that demonstrates the use of each view with normal
inline relationships:

from extra_views import CreateWithInlinesView, UpdateWithInlinesView, InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
 model = Item
 fields = ['sku', 'price', 'name']

class ContactInline(InlineFormSetFactory):
 model = Contact
 fields = ['name', 'email']

class CreateOrderView(CreateWithInlinesView):
 model = Order
 inlines = [ItemInline, ContactInline]
 fields = ['customer', 'name']
 template_name = 'order_and_items.html'

 def get_success_url(self):
 return self.object.get_absolute_url()

class UpdateOrderView(UpdateWithInlinesView):
 model = Order
 inlines = [ItemInline, ContactInline]
 fields = ['customer', 'name']
 template_name = 'order_and_items.html'

 def get_success_url(self):
 return self.object.get_absolute_url()

and in the html template:

<form method="post">
 ...
 {{ form }}

 {% for formset in inlines %}
 {{ formset }}
 {% endfor %}
 ...
 <input type="submit" value="Submit" />
</form>

InlineFormSetFactory

This class represents all the configuration necessary to generate an inline formset
from django.inlineformset_factory(). Each class within in
CreateWithInlines.inlines and UpdateWithInlines.inlines
should be a subclass of InlineFormSetFactory. All the
same methods and attributes as InlineFormSetView are available, with the
exception of any view-related attributes and methods, such as success_url
or formset_valid():

from my_app.forms import ItemForm, BaseItemFormSet
from extra_views import InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
 model = Item
 form_class = ItemForm
 formset_class = BaseItemFormSet
 initial = [{'name': 'example1'}, {'name', 'example2'}]
 prefix = 'item-form'
 factory_kwargs = {'extra': 2, 'max_num': None,
 'can_order': False, 'can_delete': False}
 formset_kwargs = {'auto_id': 'my_id_%s'}

IMPORTANT: Note that when using InlineFormSetFactory, model should be the
inline model and not the parent model.

GenericInlineFormSetView

In the specific case when you would usually use Django’s
django.contrib.contenttypes.forms.generic_inlineformset_factory(), you
should use GenericInlineFormSetView. The kwargs ct_field and
fk_field should be set in factory_kwargs if they need to be
changed from their default values:

from extra_views.generic import GenericInlineFormSetView

class EditOrderTags(GenericInlineFormSetView):
 model = Order
 inline_model = Tag
 factory_kwargs = {'ct_field': 'content_type', 'fk_field': 'object_id',
 'max_num': 1}
 formset_kwargs = {'save_as_new': True}

 ...

There is a GenericInlineFormSetFactory which is analogous to
InlineFormSetFactory for use with generic inline formsets.

GenericInlineFormSetFactory can be used in
CreateWithInlines.inlines and UpdateWithInlines.inlines in the
obvious way.

Formset Customization Examples

Overriding formset_kwargs and factory_kwargs at run time

If the values in formset_kwargs and factory_kwargs need to be
modified at run time, they can be set by overloading the get_formset_kwargs()
and get_factory_kwargs() methods on any formset view (model, inline or generic)
and the InlineFormSetFactory classes:

class AddressFormSetView(FormSetView):
 ...

 def get_formset_kwargs(self):
 kwargs = super(AddressFormSetView, self).get_formset_kwargs()
 # modify kwargs here
 return kwargs

 def get_factory_kwargs(self):
 kwargs = super(AddressFormSetView, self).get_factory_kwargs()
 # modify kwargs here
 return kwargs

Overriding the the base formset class

The formset_class option should be used if you intend to override the
formset methods of a view or a subclass of InlineFormSetFactory.

For example, imagine you’d like to add your custom clean method
for an inline formset view. Then, define a custom formset class, a subclass of
Django’s BaseInlineFormSet, like this:

from django.forms.models import BaseInlineFormSet

class ItemInlineFormSet(BaseInlineFormSet):

 def clean(self):
 # ...
 # Your custom clean logic goes here

Now, in your InlineFormSetView sub-class, use your formset class via
formset_class setting, like this:

from extra_views import InlineFormSetView
from my_app.models import Item
from my_app.forms import ItemForm

class ItemInlineView(InlineFormSetView):
 model = Item
 form_class = ItemForm
 formset_class = ItemInlineFormSet # enables our custom inline

This will enable clean method being executed on the formset used by
ItemInlineView.

Initial data for ModelFormSet and InlineFormSet

Passing initial data into ModelFormSet and InlineFormSet works slightly
differently to a regular FormSet. The data passed in from initial will
be inserted into the extra forms of the formset. Only the data from
get_queryset() will be inserted into the initial rows:

from extra_views import ModelFormSetView
from my_app.models import Item

class ItemFormSetView(ModelFormSetView):
 template_name = 'item_formset.html'
 model = Item
 factory_kwargs = {'extra': 10}
 initial = [{'name': 'example1'}, {'name': 'example2'}]

The above will result in a formset containing a form for each instance of
Item in the database, followed by 2 forms containing the extra initial data,
followed by 8 empty forms.

Altenatively, initial data can be determined at run time and passed in by
overloading get_initial():

...
class ItemFormSetView(ModelFormSetView):
 model = Item
 template_name = 'item_formset.html'
 ...

 def get_initial(self):
 # Get a list of initial values for the formset here
 initial = [...]
 return initial

Passing arguments to the form constructor

In order to change the arguments which are passed into each form within the
formset, this can be done by the ‘form_kwargs’ argument passed in to the FormSet
constructor. For example, to give every form an initial value of ‘example’
in the ‘name’ field:

from extra_views import InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
 model = Item
 formset_kwargs = {'form_kwargs': {'initial': {'name': 'example'}}}

If these need to be modified at run time, it can be done by
get_formset_kwargs():

from extra_views import InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
 model = Item

 def get_formset_kwargs(self):
 kwargs = super(ItemInline, self).get_formset_kwargs()
 initial = get_some_initial_values()
 kwargs['form_kwargs'].update({'initial': initial})
 return kwargs

Named formsets

If you want more control over the names of your formsets (as opposed to
iterating over inlines), you can use NamedFormsetsMixin:

from extra_views import NamedFormsetsMixin

class CreateOrderView(NamedFormsetsMixin, CreateWithInlinesView):
 model = Order
 inlines = [ItemInline, TagInline]
 inlines_names = ['Items', 'Tags']
 fields = '__all__'

Then use the appropriate names to render them in the html template:

...
{{ Tags }}
...
{{ Items }}
...

Success messages

When using Django’s messages framework, mixins are available to send success
messages in a similar way to django.contrib.messages.views.SuccessMessageMixin.
Ensure that 'django.contrib.messages.middleware.MessageMiddleware' is included
in the MIDDLEWARE section of settings.py.

extra_views.SuccessMessageMixin is for use with views with multiple
inline formsets. It is used in an identical manner to Django’s
SuccessMessageMixin [https://docs.djangoproject.com/en/dev/ref/contrib/messages/#django.contrib.messages.views.SuccessMessageMixin], making form.cleaned_data available for string
interpolation using the %(field_name)s syntax:

from extra_views import CreateWithInlinesView, SuccessMessageMixin
...

class CreateOrderView(SuccessMessageMixin, CreateWithInlinesView):
 model = Order
 inlines = [ItemInline, ContactInline]
 success_message = 'Order %(name)s successfully created!'
 ...

 # or instead, set at runtime:
 def get_success_message(self, cleaned_data, inlines):
 return 'Order with id {} successfully created'.format(self.object.pk)

Note that the success message mixins should be placed ahead of the main view in
order of class inheritance.

extra_views.FormSetSuccessMessageMixin is for use with views which handle a single
formset. In order to parse any data from the formset, you should override the
get_success_message method as below:

from extra_views import FormSetView, FormSetSuccessMessageMixin
from my_app.forms import AddressForm

class AddressFormSetView(FormSetView):
 form_class = AddressForm
 success_url = 'success/'
 ...
 success_message = 'Addresses Updated!'

or instead, set at runtime
def get_success_message(self, formset)
 # Here you can use the formset in the message if required
 return '{} addresses were updated.'.format(len(formset.forms))

List Views

Searchable List Views

You can add search functionality to your ListViews by adding SearchableListMixin
and by setting search_fields:

from django.views.generic import ListView
from extra_views import SearchableListMixin

class SearchableItemListView(SearchableListMixin, ListView):
 template_name = 'extra_views/item_list.html'
 search_fields = ['name', 'sku']
 model = Item

In this case object_list will be filtered if the ‘q’ query string is provided
(like /searchable/?q=query), or you can manually override get_search_query
method, to define your own search functionality.

Also you can define some items in search_fields as tuple (e.g.
[('name', 'iexact',), 'sku']) to provide custom lookups for searching.
Default lookup is icontains. We strongly recommend to use only string lookups,
when number fields will convert to strings before comparison to prevent converting errors.
This controlled by check_lookups setting of SearchableMixin.

Sortable List View

from django.views.generic import ListView
from extra_views import SortableListMixin

class SortableItemListView(SortableListMixin, ListView):
 sort_fields_aliases = [('name', 'by_name'), ('id', 'by_id'),]
 model = Item

You can hide real field names in query string by define sort_fields_aliases
attribute (see example) or show they as is by define sort_fields.
SortableListMixin adds sort_helper variable of SortHelper class,
then in template you can use helper functions:
{{ sort_helper.get_sort_query_by_FOO }},
{{ sort_helper.get_sort_query_by_FOO_asc }},
{{ sort_helper.get_sort_query_by_FOO_desc }} and
{{ sort_helper.is_sorted_by_FOO }}

Change History

0.14.0 (2021-06-08)

Changes:

Supported Versions:

	Python

	Django

	3.5

	2.1–2.2

	3.6-3.7

	2.1–3.1

	3.8

	2.2–3.1

	Removed support for Python 2.7.

	Added support for Python 3.8 and Django 3.1.

	Removed the following classes (use the class in parentheses instead):

	BaseFormSetMixin (use BaseFormSetFactory).

	BaseInlineFormSetMixin (use BaseInlineFormSetFactory).

	InlineFormSet (use InlineFormSetFactory).

	BaseGenericInlineFormSetMixin (use BaseGenericInlineFormSetFactory).

	GenericInlineFormSet (use GenericInlineFormSetFactory).

0.13.0 (2019-12-20)

Changes:

Supported Versions:

	Python

	Django

	2.7

	1.11

	3.5

	1.11–2.2

	3.6-3.7

	1.11–3.0

	Added SuccessMessageMixin and FormSetSuccessMessageMixin.

	CreateWithInlinesView and UpdateWithInlinesView now call self.form_valid
method within self.forms_valid.

	Revert view.object back to it’s original value from the GET request if
validation fails for the inline formsets in CreateWithInlinesView and
UpdateWithInlinesview.

	Added support for Django 3.0.

0.12.0 (2018-10-21)

Supported Versions:

	Python

	Django

	2.7

	1.11

	3.4

	1.11–2.0

	3.5-3.7

	1.11–2.1

Changes:

	Removed setting of BaseInlineFormSetMixin.formset_class and
GenericInlineFormSetMixin.formset_class so that formset can be set in
factory_kwargs instead.

	Removed ModelFormSetMixin.get_context_data and
BaseInlineFormSetMixin.get_context_data as this code was duplicated from
Django’s MultipleObjectMixin and SingleObjectMixin respectively.

	Renamed BaseFormSetMixin to BaseFormSetFactory.

	Renamed BaseInlineFormSetMixin to BaseInlineFormSetFactory.

	Renamed InlineFormSet to InlineFormSetFactory.

	Renamed BaseGenericInlineFormSetMixin to BaseGenericInlineFormSetFactory.

	Renamed GenericInlineFormSet to GenericInlineFormSetFactory.

All renamed classes will be removed in a future release.

0.11.0 (2018-04-24)

Supported Versions:

	Python

	Django

	2.7

	1.11

	3.4–3.6

	1.11–2.0

Backwards-incompatible changes

	Dropped support for Django 1.7–1.10.

	Removed support for factory kwargs extra, max_num, can_order,
can_delete, ct_field, formfield_callback, fk_name,
widgets, ct_fk_field being set on BaseFormSetMixin and its
subclasses. Use BaseFormSetMixin.factory_kwargs instead.

	Removed support for formset_kwarg save_as_new being set on
BaseInlineFormSetMixin and its subclasses. Use
BaseInlineFormSetMixin.formset_kwargs instead.

	Removed support for get_extra_form_kwargs. This can be set in the
dictionary key form_kwargs in BaseFormSetMixin.formset_kwargs instead.

0.10.0 (2018-02-28)

New features:

	Added SuccessMessageWithInlinesMixin (#151)

	Allow the formset prefix to be overridden (#154)

Bug fixes:

	SearchableMixin: Fix reduce() of empty sequence error (#149)

	Add fields attributes (Issue #144, PR #150)

	Fix Django 1.11 AttributeError: This QueryDict instance is immutable (#156)

0.9.0 (2017-03-08)

This version supports Django 1.7, 1.8, 1.9, 1.10 (latest minor versions), and Python 2.7, 3.4, 3.5 (latest minor versions).

	Added Django 1.10 support

	Dropped Django 1.6 support

0.8 (2016-06-14)

This version supports Django 1.6, 1.7, 1.8, 1.9 (latest minor versions), and Python 2.7, 3.4, 3.5 (latest minor versions).

	Added widgets attribute setting; allow to change form widgets in the ModelFormSetView.

	Added Django 1.9 support.

	Fixed get_context_data() usage of *args, **kwargs.

	Fixed silent overwriting of ModelForm fields to __all__.

Backwards-incompatible changes

	Dropped support for Django <= 1.5 and Python 3.3.

	Removed the extra_views.multi module as it had neither documentation nor
test coverage and was broken for some of the supported Django/Python versions.

	This package no longer implicitly set fields = '__all__'.
If you face ImproperlyConfigured exceptions, you should have a look at the
Django 1.6 release notes [https://docs.djangoproject.com/en/stable/releases/1.6/#modelform-without-fields-or-exclude] and set the fields or exclude attributes
on your ModelForm or extra-views views.

0.7.1 (2015-06-15)

Beginning of this changelog.

Index

Installation

Install the stable release from pypi (using pip):

pip install django-extra-views

Or install the current master branch from github:

pip install -e git://github.com/AndrewIngram/django-extra-views.git#egg=django-extra-views

Then add 'extra_views' to your INSTALLED_APPS:

INSTALLED_APPS = [
 ...
 'extra_views',
 ...
]

Quick Examples

FormSetView

Define a FormSetView, a view which creates a single formset from
django.forms.formset_factory and adds it to the context.

from extra_views import FormSetView
from my_forms import AddressForm

class AddressFormSet(FormSetView):
 form_class = AddressForm
 template_name = 'address_formset.html'

Then within address_formset.html, render the formset like this:

<form method="post">
 ...
 {{ formset }}
 ...
 <input type="submit" value="Submit" />
</form>

ModelFormSetView

Define a ModelFormSetView, a view which works as FormSetView
but instead renders a model formset using
django.forms.modelformset_factory.

from extra_views import ModelFormSetView

class ItemFormSetView(ModelFormSetView):
 model = Item
 fields = ['name', 'sku']
 template_name = 'item_formset.html'

CreateWithInlinesView or UpdateWithInlinesView

Define CreateWithInlinesView and UpdateWithInlinesView,
views which render a form to create/update a model instance and its related
inline formsets. Each of the InlineFormSetFactory classes use similar
class definitions as the ModelFormSetView.

from extra_views import CreateWithInlinesView, UpdateWithInlinesView, InlineFormSetFactory

class ItemInline(InlineFormSetFactory):
 model = Item
 fields = ['sku', 'price', 'name']

class ContactInline(InlineFormSetFactory):
 model = Contact
 fields = ['name', 'email']

class CreateOrderView(CreateWithInlinesView):
 model = Order
 inlines = [ItemInline, ContactInline]
 fields = ['customer', 'name']
 template_name = 'order_and_items.html'

class UpdateOrderView(UpdateWithInlinesView):
 model = Order
 inlines = [ItemInline, ContactInline]
 fields = ['customer', 'name']
 template_name = 'order_and_items.html'

Then within order_and_items.html, render the formset like this:

<form method="post">
 ...
 {{ form }}

 {% for formset in inlines %}
 {{ formset }}
 {% endfor %}
 ...
 <input type="submit" value="Submit" />
</form>

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 django-extra-views

 		
 Getting Started

 		
 Installation

 		
 Quick Examples

 		
 FormSetView

 		
 ModelFormSetView

 		
 CreateWithInlinesView or UpdateWithInlinesView

 		
 Formset Views

 		
 FormSetView

 		
 Formset constructor and factory kwargs

 		
 ModelFormSetView

 		
 InlineFormSetView

 		
 CreateWithInlinesView and UpdateWithInlinesView

 		
 InlineFormSetFactory

 		
 GenericInlineFormSetView

 		
 Formset Customization Examples

 		
 Overriding formset_kwargs and factory_kwargs at run time

 		
 Overriding the the base formset class

 		
 Initial data for ModelFormSet and InlineFormSet

 		
 Passing arguments to the form constructor

 		
 Named formsets

 		
 Success messages

 		
 List Views

 		
 Searchable List Views

 		
 Sortable List View

 		
 Change History

 		
 0.14.0 (2021-06-08)

 		
 Changes:

 		
 0.13.0 (2019-12-20)

 		
 Changes:

 		
 0.12.0 (2018-10-21)

 		
 Changes:

 		
 0.11.0 (2018-04-24)

 		
 Backwards-incompatible changes

 		
 0.10.0 (2018-02-28)

 		
 0.9.0 (2017-03-08)

 		
 0.8 (2016-06-14)

 		
 Backwards-incompatible changes

 		
 0.7.1 (2015-06-15)

_static/comment-bright.png

_static/ajax-loader.gif

